Statistical significance of climate sensitivity predictors obtained by data mining
نویسندگان
چکیده
Several recent efforts to estimate Earth’s equilibrium climate sensitivity (ECS) focus on identifying quantities in the current climate which are skillful predictors of ECS yet can be constrained by observations. This study automates the search for observable predictors using data from phase 5 of the Coupled Model Intercomparison Project. The primary focus of this paper is assessing statistical significance of the resulting predictive relationships. Failure to account for dependence between models, variables, locations, and seasons is shown to yield misleading results. A new technique for testing the field significance of data-mined correlations which avoids these problems is presented. Using this new approach, all 41,741 relationships we tested were found to be explainable by chance. This leads us to conclude that data mining is best used to identify potential relationships which are then validated or discarded using physically based hypothesis testing.
منابع مشابه
Application of Data-Mining Algorithms in the Sensitivity Analysis and Zoning of Areas Prone to Gully Erosion in the Indicator Watersheds of Khorasan Razavi Province
Extended abstract 1- Introduction Gully erosion is one of the most important sources of sediment in the watersheds and a common phenomenon in semi-arid climate that affects vast areas with different morphological, soil and climatic conditions. This type of erosion is very dangerous due to the transfer of fertile soil horizons, and the reduction of water holding capacity also is a factor for s...
متن کاملPredictors of Pre-diabetes Hemoglobin A1C Test in Overweight Obese and Overweight Employees Based on Protection Motivation Model
Background objective: This research paper aimed at to study the factors in relevance to the performance of screening behavior in per diabetes based on the stimulus model of preserve from the overweight and obese personnel of Karaj education administration. Materials and methods: the research method of the study is descriptive-analytical one and the statistical community of survey, are including...
متن کاملComplex networks as a unified framework for descriptive analysis and predictive modeling in climate science
The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim toward characterizing obse...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملClinical malaria diagnosis: rule-based classification statistical prototype
In this study, we identified predictors of malaria, developed data mining, statistically enhanced rule-based classification to diagnose malaria and developed an automated system to incorporate the rules and statistical models. The aim of the study was to develop a statistical prototype to perform clinical diagnosis of malaria given its adverse effects on the overall healthcare, yet its treatmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014